A preconditioner for the Schur complement domain decomposition method

نویسندگان

  • Ismael Herrera
  • David E. Keyes
  • Olof B. Widlund
  • Robert Yates
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioner Construction with Rational Approximation

AbRtract This paper deals with the domain decomposition-based preconditioned conjugate gradient method. The Schur complement is expressed as a function of & simple interface matrix. This function is approximated by a simple rational function to generate a simple matrix that is then used 8.8 & preconditioner for the Schur complement. Extensive experiments are performed to examine the effectivene...

متن کامل

A preconditioner for the Schur complement matrix

A preconditioner for iterative solution of the interface problem in Schur Complement Domain Decomposition Methods is presented. This preconditioner is based on solving a problem in a narrow strip around the interface. It requires much less memory and computing time than classical Neumann-Neumann preconditioner and its variants, and handles correctly the flux splitting among subdomains that shar...

متن کامل

Block Diagonal Preconditioners for the Schur Complement Method Block Diagonal Preconditioners for the Schur Complement Method

We present numerical methods for solving systems of linear equations originated from the discretisation of two-dimensional elliptic partial diierential equations. We are interested in diierential equations that describe heterogeneous and anisotropic phenomena. We use a nonoverlapping domain decomposition method for solving the linear systems. We describe new local preconditioners for the interf...

متن کامل

A Parallel Non-Overlapping Domain-Decomposition Algorithm for Compressible Fluid Flow Problems on Triangulated Domains

This paper considers an algebraic preconditioning algorithm for hyperbolicelliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of tr...

متن کامل

Balancing Neumann-Neumann Methods for Elliptic Optimal Control Problems

We present Neumann-Neumann domain decomposition preconditioners for the solution of elliptic linear quadratic optimal control problems. The preconditioner is applied to the optimality system. A Schur complement formulation is derived that reformulates the original optimality system as a system in the state and adjoint variables restricted to the subdomain boundaries. The application of the Schu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003